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INTRODUCTION 
 

 In the interest of assaying spent nuclear fuel, we evaluate nuclear resonance florescence (NRF) 

as a possible means of identifying nuclides in a given sample. Every nuclide has a unique set of nuclear 

excitation energies, which can serve as a signature for the presence of that nuclide. In NRF interrogation, 

a continuous-spectrum photon beam is directed on a target. The photons that are very close to the 

excitation energies of the nuclides in the target are preferentially absorbed, and re-emitted a short time 

later as isotropic radiation of the same energy. Direct measurement of the output radiation at a heavily-

shielded backwards angle isolates the NRF photons from the interrogating beam. The isolated NRF 

spectrum gives quantitative data about the composition of the target. However, NRF photons generated 

within the target will be heavily attenuated on the way out, resulting in a low count rates at the 

detector. 

 

 Instead of measuring the NRF spectrum directly, we can also use a tomography-like approach to 

measure the effects the target has on the transmitted interrogation beam. This allows us to more 

accurately find the total amount of NRF absorption that occurred in the target. Since NRF radiation is 

emitted isotropically, the large majority of NRF photons will travel in a different direction than the 

original interrogating beam. A direct measurement of the transmitted beam shows how much of it was 

absorbed or scattered, thereby providing information on the nuclides present in the target. However, 

the interrogating beam itself is generally too intense for a direct measurement. Also, one is often 

concerned only with particular features of the output spectrum, i.e. at energies near the resonances of a 

specific nuclide. 

 

 A witness foil may be used to address the issues involved with direct measurement of the beam 

exiting the target. These foils are composed of a single type of nuclide (at least as pure as manufacturing 

allows), and therefore respond in a very well-defined manner to an interrogating beam. NRF in the foil is 

the dominant effect over an energy range comparable to the energy resolution in HPGe detectors (~3 

keV). Therefore, one can expect significant differences in the emissions from the witness foil, depending 

on how the initial target affects the spectrum of the interrogation beam.  

 

For example, consider two different targets and a test using a 
235

U witness foil. One of the 

targets contains almost no 
235

U, while the other is enriched to, say, 20%. A bremsstrahlung source 

creates a continuous photon spectrum with a large flux at 1.733 MeV (one of the excitation energies of 
235

U). Unless 
235

U is present in the target, very few of the 1.733 MeV photons in the beam interact within 

the target. Therefore, when this beam interacts with the low-enrichment target, it is mostly 

unattenuated at this key energy. When the beam then hits the witness foil, large NRF effects are 

observed. But in the high-enrichment target, a large fraction of the 1.733 MeV intensity is absorbed 

within the target. Thus, fewer of these photons remain to induce NRF within the foil. The emitted 

spectrum from the foil depends strongly on how much 
235

U is present in the target. 



THE PROBLEM 

 
 While it is clear that the NRF spectrum from a witness foil depends on the composition of the 

initial target, we need to know the relationship precisely to effectively scan nuclear material. Obtaining 

reliable analytical calculations is the first step towards this goal. Hand calculations for all but the 

simplest cases are untenable, due to the large number of nuclides involved and the complexity of cross-

sections as functions of energy. MCNP seems the natural solution to get past the large amount of 

computation involved. However, we have recently uncovered flaws hardwired into MCNP’s treatment of 

scattering physics. (See Brian Quiter’s work on Rayleigh scattering for high-Z nuclei for a detailed 

description of the problem.) These flaws made MCNP unsuitable for our simulations. 

 

 

 

 



THE SOLUTION 

 
 To work around these issues, we have written a set of Matlab tools designed to simulate a 

simple witness foil geometry. The code relies on user input for cross-section data; this allows one to 

include or remove various interactions at will by modifying the cross-sections. One must also specify the 

compositions of the target and the witness foil, among other physical parameters. A detailed description 

of the input can be found in the documentation section of this paper. 

 

 The toolset currently includes 6 Matlab functions: 

• witnessCalc 

This is the main control interface. It reads cross-section data from an input file, calls methods to 

calculate attenuation coefficients, computes output spectra, and writes the results to a text file. 

• fileReader 

Reads numerical data from a delimited text file into a matrix in Matlab. Note that the input file 

must be rectangular in that each line contains the same number of fields. The function skips any 

line containing non-numerical text. 

• parseTXTline 

A helper method for fileReader, which reads a delimited text string and returns an array of 

values 

• atomToMassPercent 

witnessCalc supports composition inputs in either relative atomic abundance or in mass percent. 

Since it is often easier to compute atomic abundances, this function converts the composition 

into mass percent form. This form is then directly used for calculating photon attenuation within 

both the target and foil. 

• attenuator 

This function takes composition and cross-section data to compute attenuation coefficients as 

functions of energy. 

• writeDataToTxt 

Matlab’s data output is remarkably clunky and ill-suited for text files. This function allows one to 

more easily print data arrays directly to a specified text file. 



COMPUTATIONAL METHODS 

 
To compute the intensity of photons emitted by the witness foil, we must find the attenuation 

of the interrogation beam through each material. Suppose that a nuclide ni has a cross-section function 

σi(E) and a number density of Ni atoms per unit volume. Then the attenuation coefficient as a function of 

energy is 

μi(E) = σi(E) Ni 

The total attenuation coefficient for the material is μ(E) = Σ μi(E) summed over all nuclides present. 

Then, given an incident photon intensity of I0(E), the attenuated intensity of the output beam is 

I(E) = I0(E) e
-μ(E) x 

Where x is the length of the path the beam follows through the material. For normal incidence, x is 

simply the thickness of the material. 

 

 Note that the number density of nuclide ni can be calculated from its atomic mass and the 

density of the solid material it is part of. Specifically, if ρ is the density of the material, Ai is the atomic 

mass, and Mi is the mass percent of the nuclide within the material, 

Ni = (ρ NA Mi /100)/ Ai 

where NA = 6.022 x 10
23

 is Avogadro’s number. The atomic abundance Mi’ is related to the mass percent 

Mi by the formula 

Mi = Ai Mi’ / M 

Where M = Σ Ai Mi’ summed over all nuclides present. 

 

 For our purposes, we assume the following geometry. The interrogating beam is incident normal 

to the target, which has a thickness D1 and attenuation coefficients μ1(E). Therefore, the spectrum of 

photons leaving the target (and hence which are incident on the witness foil) is defined by 

Ito foil(E) = I0(E) e
-μ1(E) D1 

This spectrum is further attenuated in the foil to Iout(E) = Ito foil(E) e
-μ2(E) D2

, given a foil thickness D2 and 

attenuation coefficients μ2(E). The amount of NRF produced in the foil during this attenuation is thus 

INRF(E) = Ito foil(E) - Iout(E). 

 

 However, this NRF spectrum is itself attenuated as it exits the foil towards the detector. Since 

the NRF emissions occur at different depths within the foil, we must find an “average” attenuation 

distance. Let θ be the angle from the original beam axis in the foil to the detector. Assume that the 

distance to this detector is large enough relative to the thickness of the foil that θ does not change 

throughout the foil. By this, assume that the attenuation depth as seen by the NRF photons is constant 

over the whole solid angle subtended by the detector. 

 

 Define the average NRF intensity within the foil to be Iavg(E) = ( Ito foil(E) + Iout(E) )/2. The effective 

attenuation coefficient due to the witness foil is  

μe(E) =μ(E) (1 + |cos θ|
-1

) 

Let the average attenuation depth then be defined  

D(E) = - μe(E)
-1

 ln (Iavg(E)) 

Finally, the NRF intensity that emerges from the foil at an angle of θ is: 

Ifinal(E) = INRF(E) e
-μ2(E) D(E) 

Divide by 4π to get the intensity per steradian. 



DOCUMENTATION 

 
 This section documents the use of witnessCalc, including input/output files and command lines. 

As mentioned in the introduction, this toolset includes 6 Matlab functions, all of which are required to 

run the chain properly. Below is a complete description of the command-line use for each function. 

 

• [postTarg_spec,final_spec] =  

witnessCalc(inputTable,atomicOrMass,targ_comp,targ_thick,targ_dense,foil_comp,foil_thick, 

foil_dense,detectorAngle,output_filename) 

All parameters except output_filename are required. If output_filename is not given, no output 

file is written. 

- inputTable is a string that lists the name of main cross-section data file to be used. This file 

must be located in the current working directory in Matlab 

- atomicOrMass is a switch with two options: ‘atomic’ or ‘mass’. This specifies if atomic 

abundance or mass percent was used to define compositions. Note that this option must be 

the same for both the foil and the target. 

- targ_comp is a three-column array detailing the composition of the target. It has the 

following format: 

o Column 1: 5-digit ZAID 

o Column 2: Relative composition (in atomic % or mass %) 

o Column 3: Column index in inputTable for cross-section data for the nuclide 

- targ_thick simply gives the path length (in cm) of the beam through the target 

- targ_dense is the mass density of the target material, in g/cm
3
 

- foil_comp has the same form as targ_comp, but specifies the foil composition 

- foil_thick is the thickness of the witness foil in cm 

- foil_dense is the mass density of the foil material, in g/cm
3
 

- detectorAngle is the angle between the interrogating beam direction and the line from the 

witness foil to the detector 

- output_filename is a string specifying the name of a tab-delimited text file to write output 

data to 

 

Output values 

- postTarg_spec is the relative intensity (Ito foil/I0) of the photon beam that leaves the back of 

the target and is thus incident on the target. 

- final_spec is the relative intensity of the NRF lines that exit the witness foil. It is given in 

(Ifinal/I0) / steradian. 

Both output values are given as column vectors. The output written to output_filename includes 

a 5-column array of the form: 

- Column 1: Energy (eV) 

- Column 2: Source Intensity (in #/cm
2
/s/eV) 

- Column 3: Bin width for the current row, in eV 

- Column 4: postTarg_spec (normalized to source intensity) 

- Column 5: final_spec (normalized to source intensity, per steradian) 

- Column 6: Absolute NRF spectra leaving the foil (per steradian) 

 

In addition, the compositions and physical parameters for the foil and target, and a copy of 

inputTable are included. 



 

• dataArray = fileReader(filename,spacingChar)  

The filename parameter is required; spacingChar is optional and defaults to ‘,’ if not specified. 

- filename is a string giving the name of a text file to read into Matlab’s memory. 

- spacingChar represents the character used to delimit the text file. ‘\t’ (tabs) and ‘,’ 

(commas) are the most common. 

- dataArray is the Matlab matrix of numerical data as retrieved from the file in question. 

 

Note that inputTable must be a *.csv file within this toolchain. fileReader is called using the 

default comma delimiter. 

 

• [dataFields] = parseTXTline(line,spacingChar) 

The filename parameter is required; spacingChar is optional and defaults to ‘,’ if not specified. 

- line is a delimited text string to separate into a vector of fields 

- spacingChar represents the character used to delimit the text file.  

- dataFields is a Matlab vector of string data as retrieved from the text line in question. 

 

• massPerc = atomToMassPercent(atomPerc) 

- atomPerc is a composition array, as used by witnessCalc. It contains 3 columns as follows: 

o Column 1: 5-digit ZAID 

o Column 2: Relative composition (in atomic %) 

o Column 3: Column index in inputTable for cross-section data for the nuclide 

- massPerc is the same composition array as atomPerc, except that column 2 now lists the 

composition in mass percents 

 

• coefficients = attenuator(composition,density,masterArray) 

- composition is a three column array with the standard form used for compositions in this 

toolset. The columns are: 

o Column 1: 5-digit ZAID 

o Column 2: Relative composition (in mass %) 

o Column 3: Column index in inputTable for cross-section data for the nuclide 

- density is the material mass density of the material through which a beam is attenuated 

- masterArray is the numeric array of cross-sections as functions of energy, as read from 

inputTable in witnessCalc 

- coefficients is a vector of attenuation coefficients as a function of energy 

 

• writeDataToFile(filename,spacingChar,varargin) 

- filename is a string that gives the name of the file to write output data to. 

- spacingChar specifies the delimiting character to write the output with 

- varargin can be any number of cells, strings, or arrays to be written to an output file. 

Note that newlines are automatically inserted between each dataset given in varargin. To insert 

special characters or extra delimiters, one must write them directly into the arrays. 



 

The main cross-section data is taken from a comma-separated value (*.csv) file whose name is specified 

by the inputTable argument in witnessCalc. The structure of this file is as follows: 

• Column 1: Energy in keV 

• Column 2: Interrogation beam intensity, in #/cm
2
/s/eV 

• Column 3: Bin width for the current row, in eV 

• Columns 4+: Cross-sections (in barns) for the nuclides used in the calculation 

 

EXAMPLE USE 

 
 To illustrate the use of witnessCalc, here is an example computation. The inputs below are 

written in the form one would use in Matlab. 

 

targ_comp =  

 [8016,55.1,7;40090,17.2,6;92238,27.7,4]; 

 

foil_comp = [92235,100,5]; 

 

[postTarg_spec,final_spec] =  

witnessCalc('masterArray.csv','atomic',targ_comp,21.8,4,foil_comp,0.5,19.1,135, 

'witnessCalcData.txt'); 

 

Here, the target is composed of 55.1% 
16

O, 17.2% 
90

Zr, and 27.7% 
238

U by atomic abundance. Similarly, 

the foil is 100% pure 
235

U. The target is 21.8 cm thick and has density 4 g/cm
3
. The foil is 5 mm thick and 

has a density of g/cm
3
. The detector is at a backwards angle of 135˚. Finally, all output is written to a file 

called witnessCalcData.txt in the current working directory. 

 

The compositions above state that the cross section data for 
16

O can be found in column 7 of 

‘masterArray.csv’. Similarly, 
90

Zr cross sections are in column 6, while those for 
238

U and 
235

U are in 

columns 4 and 5, respectively. 

 

In addition, the masterArray.csv file might be: 

Energy (eV),Intensity (#/eV),binWidth (eV),U-238 XS (b),U-235 XS (b),Zr-90 XS (b),O-16 XS (b) 

1731500,1e9,1498,2,2,2,2 

1732998,9e8,1,2,2.5,2,2 

1732999,9e8,1,2,5,2,2 

1733000,9e8,1,2,10,2,2 

1733001,9e8,1,2,5,2,2 

1733002,9e8,1,2,2.5,2,2 

1734500,8e8,1498,2,2,2,2 



 

In more readable form, this translates to: 

Energy (eV) Intensity (#/eV) binWidth (eV) U-238 XS (b) U-235 XS (b) Zr-90 XS (b) O-16 XS (b) 

1731500 1.00E+09 1498 2 2 2 2 

1732998 9.00E+08 1 2 2.5 2 2 

1732999 9.00E+08 1 2 5 2 2 

1733000 9.00E+08 1 2 10 2 2 

1733001 9.00E+08 1 2 5 2 2 

1733002 9.00E+08 1 2 2.5 2 2 

1734500 8.00E+08 1498 2 2 2 2 

 

This table shows that 
235

U has an NRF peak of 10 barns centered at 1.733 MeV, where the initial beam 

intensity gives 9.00E+08 photons/cm
2
/s. Note that in the first and last bins, which are much wider than 

the others, many more photons are created. This allows one to weight the spectrum appropriately to 

deal with extremely fine energy resolution and bulk bins at the same time. 



SOURCE CODE 

 

 The source code for witnessCalc, fileReader, parseTXTline, atomToMassPercent, attenuator, and 

writeDataToTxt is given below. 

 

 
function writeDataToFile(filename,spacingChar,varargin) 

% Function writes a tab-delimited file from data specified in varargin 

 

% -- "filename" is the name of the file to be written 

% -- "spacingChar" determines how the data fields in each object passed 

%    through varargin should be spaced. For example, if spacingChar = '\t', 

%    then the output file will be tab delimited. 

% -- varargin contains any number of headers and/or data matrices to write 

%    to a file. This function decides what each parameter is and prints it 

%    appropriately. 

 

fileID = fopen(filename,'wt'); 

 

% First, we determine how many objects there are to print 

for i = [1:length(varargin)] 

    data = varargin{i}; 

    % Matlab is very clunky for dealing with file output and strings 

    % We need to convert each entry in data into a string to write 

    % separately. 

    [rows,columns] = size(varargin{i}); 

    for R =[1:rows] 

        temp = cell(1,columns); 

        for C = [1:columns] 

            temp = data(R,C); % temp is the ith row of the dataArray matrix 

            if isa(temp,'numeric') == 1 

                temp = num2str(temp); 

            elseif isa(temp,'cell') == 1 

                    temp = temp{1}; 

            else 

                error(['Undefined data type. Cannot write as text']); 

            end 

            % Special characters will be interpreted literally. Let's 

            % interpret them if they come up: 

            if strcmp(temp,'\n') 

                fprintf(fileID,'\n'); 

            elseif strcmp(temp,'\t') 

                fprintf(fileID,'\t') 

            % Print the data and a tab-delimiter, unless it's the last column 

            elseif C == columns % Print a newline character instead of a tab here 

                fprintf(fileID,'%s\n',temp); 

            else  

                fprintf(fileID,'%s\t',temp); 

            end 

        end 

    end 

end 

fclose(fileID); 

 

 



 

 

% Reads numerical data from a *.csv file into memory 

% This function automatically removes any lines that contain non-number 

% strings. Make sure the *.csv is rectangular and only contains one dataset! 

 

function dataArray = fileReader(filename,spacingChar) 

fileID = fopen(filename); 

if fileID < 0 

   error(['Could not open ',filename,' for input']); 

end 

 

% If spacingChar is not specified, this reads *.csv files by default 

if nargin < 2 

    spacingChar = ','; 

end 

% First we need to figure out the dimensions of our master array. 

% "rows" represents the number of rows, while "cols" is the number of 

% columns 

status = 1; 

rows = 0; 

cols = 0; 

while status > 0 

    line = fgetl(fileID); 

    % We only want to see how many fields are in the line 

    junk = parseTXTline(line,spacingChar); 

    tempCols = length(junk); 

    % If this line has a different number of fields than the line before it, 

    % we have a problem! 

    if (tempCols ~= cols && cols ~= 0 && tempCols ~= 0) 

        error(['*.csv data is not rectangular']); 

    end 

    if line == -1 

        status = 0; 

        break 

    end 

    rows = rows + 1; 

    cols = tempCols; 

end 

 

% Need to reinstantiate the *.csv file for access 

fileID = fopen(filename); 

 

% strArray is a cell whose entries represent the columns in the *.csv file 

% It is output as a cell of strings 

strArray = cell(rows,cols); 

 

% This loop populates strArray and then checks to see which rows have 

% non-number strings in them 

badRows = []; % Contains the row indices for the non-number strings 

for i = [1:rows] 

    line = fgetl(fileID); 

    NaNFlag = 0; 

    [data,junk] = strtok(line,';'); 

    % Now we parse the data by comma-delimiting 

    fields = parseTXTline(data,spacingChar); 

    for j = [1:cols] 

        % Is the data point not a valid number? 



        if size(str2num(fields{j})) == [0 0] 

            NaNFlag = 1; % True if one or more entries is NaN 

        end 

        strArray{i,j} = fields{j}; 

    end 

    % If we found a non-number, we'll skip the row for the final array 

    if NaNFlag == 1 

        badRows = [badRows i]; 

    end 

end 

 

% We have now read the *.csv file into memory. Now we want to take out 

% header rows or any other rows containing text 

[junk,rowsToDel] = size(badRows); 

dataArray = zeros(rows-rowsToDel,cols); 

index = 1; 

for i = [1:rows] 

    % Checking if badRows contains the current row index 

    % Only writes good rows to dataArray 

    if size(find(badRows == i)) ~= [1 1] 

       for j = [1:cols] 

           dataArray(index,j) = str2num(strArray{i,j}); 

       end 

       index = index + 1; 

    end 

end 

 

fclose all; 

 

 

function [dataFields] = parseTXTline(line,spacingChar) 

% Uses a while loop to extract data fields from a comma-delimited string 

 

% If spacingChar is not specified, this reads *.csv files by default 

if nargin < 2 

    spacingChar = ','; 

end 

 

% Want to figure out how many data entries there are, first 

% This loop finds the first field from the string, then loops using the line 

% minus that field 

counter = 0; 

tempLine = line; 

while length(tempLine) > 1 

    [field,remainder] = strtok(tempLine,spacingChar); 

    tempLine = remainder; 

    counter = counter + 1; 

end 

 

dataFields = cell(1,counter); 

% Must reinitialize the line to read into dataArray 

tempLine = line; 

for i = 1:counter 

    [field,remainder] = strtok(tempLine,spacingChar); 

    tempLine = remainder; 

    dataFields{i} = field; 

end 

 



 

 

function massPerc = atomToMassPercent(atomPerc) 

% Converting composition arrays from atomic percent to mass percent 

 

% This function converts the material composition given by the 

% atomPerc matrix, specified in atomic percentages, into the 

% masses matrix. The output lists the composition in terms of mass 

% percents. 

 

% The input matrix should have two columns: the first gives ZAIDs for the 

% component nuclides, while the second gives the atomic percentage within 

% the material in question. 

 

[nuclides,columns] = size(atomPerc); 

  

% massPerc has an identical structure to atomPerc. Only column 2 is 

% different 

massPerc = atomPerc; 

masses = zeros(nuclides,1); 

 

totalAtomPercent = 0; % A quick check to make sure the composition was normalized correctly 

for i = [1:nuclides] 

    % What is the number density of the nuclide? 

    ZAID = atomPerc(i,1); 

     

    Z = double(uint16(ZAID/1000)); 

    A = ZAID - Z*1000; 

    atomPercent = atomPerc(i,2); 

     

    totalAtomPercent = totalAtomPercent + atomPercent; 

     

    % Now to find the weighted mass proportions 

    masses(i) = atomPercent*A; 

end 

 

% The total mass is the sum of all entries in masses; this lets us 

% compute mass percents 

totalMass = sum(masses); 

massPerc(:,2) = 100*masses/totalMass; 

 

if totalAtomPercent ~= 100 

    sprintf('Warning: An atomic composition is not normalized to 100 percent!\nIt sums to %f percent.',totalAtomPercent) 

end 

 



 

 

function coefficients = attenuator(composition,density,masterArray) 

% Used in tandem with witnessCalc to compute attenuation coefficients 

 

% The input requires the composition, density, and thickness of the  

% material through which a beam is attenuated. In addition, a masterArray 

% contains all the cross-section data for the nuclides specified in the 

% composition matrix. 

 

% 

% -- composition is a three-column matrix specifying the composition of the 

%    target. The first column should list ZAIDs while the second lists the 

%    relative abundance of nuclides (in mass %). The third column points to 

%    the column in inputTable that contains cross-section data for the 

%    nuclide. 

% -- density is the density of the target in g/cc 

 

% masterArray has the following structure: 

% Column 1: Bin energy in keV 

% Column 2: Intensity of the source as a function of energy within each bin 

%           (in units of #/s/cm^2/eV for normalization) 

% Column 3: Widths of the energy bins in column 2 (in eV) 

% Columns 4+: Cross-sections of nuclides in the target or foil as a 

%             function of energy (in barns) 

 

[N_bins,columns] = size(masterArray); % Looks up how many energy bins there are 

 

% Need to find the size of targ_comp to know how many nuclides are present 

[nuclides,columns] = size(composition); 

  

% The number of interactions in the target as a function of E, per unit time 

coefficients = zeros(N_bins,1); 

 

totalMassPercent = 0; % A quick check to make sure the composition was input correctly 

for i = [1:nuclides] 

    % What is the number density of the nuclide? 

    ZAID = composition(i,1); 

    Z = double(uint16(ZAID/1000)); 

    A = ZAID - Z*1000; 

     

    massPercent = composition(i,2); 

     

    N_density = (6.022*10^23)*(density*massPercent/100)/A; 

     

    % Where is the cross-section data in masterArray? 

    xs_col = composition(i,3); 

    nuclide_xs = 10^-24*masterArray(:,xs_col); 

     

    % Each individual component of the target contributes to the effective 

    % cross section, and hence the attenuation coefficient: 

    coefficients = coefficients + N_density*nuclide_xs; 

end 

 



 

 

function writeDataToFile(filename,spacingChar,varargin) 

% Function writes a tab-delimited file from data specified in varargin 

 

% -- "filename" is the name of the file to be written 

% -- "spacingChar" determines how the data fields in each object passed 

%    through varargin should be spaced. For example, if spacingChar = '\t', 

%    then the output file will be tab delimited. 

% -- varargin contains any number of headers and/or data matrices to write 

%    to a file. This function decides what each parameter is and prints it 

%    appropriately. 

 

fileID = fopen(filename,'wt'); 

 

% First, we determine how many objects there are to print 

for i = [1:length(varargin)] 

    data = varargin{i}; 

    % Matlab is very clunky for dealing with file output and strings 

    % We need to convert each entry in data into a string to write 

    % separately. 

    [rows,columns] = size(varargin{i}); 

    for R =[1:rows] 

        temp = cell(1,columns); 

        for C = [1:columns] 

            temp = data(R,C); % temp is the ith row of the dataArray matrix 

            if isa(temp,'numeric') == 1 

                temp = num2str(temp); 

            elseif isa(temp,'cell') == 1 

                    temp = temp{1}; 

            else 

                error(['Undefined data type. Cannot write as text']); 

            end 

            % Special characters will be interpreted literally. Let's 

            % interpret them if they come up: 

            if strcmp(temp,'\n') 

                fprintf(fileID,'\n'); 

            elseif strcmp(temp,'\t') 

                fprintf(fileID,'\t') 

            % Print the data and a tab-delimiter, unless it's the last column 

            elseif C == columns % Print a newline character instead of a tab here 

                fprintf(fileID,'%s\n',temp); 

            else  

                fprintf(fileID,'%s\t',temp); 

            end 

        end 

    end 

end 

fclose(fileID); 

 

 


